d-BLOCK ELEMENTS No. of lectures – 12 Term - 1 # INTRODUCTION OF D-BLOCK ELEMENTS | THE PERIODIC TABLE | | | | | | | | | | 0.20 | | | | | | | | | |--------------------|---------------------------------------|--------------------------------|-------------------------------|-------------------------------------|-------------------------------|---------------------------------------|---------------------------------|---------------------------------|--------------------------------|--|--|--------------------------------------|----------------------------------|-------------------------------------|--------------------------------|-------------------------------------|-------------------------------|-------------------------------------| | | 1
IA | | | | | | | | | | | | | | | | | 18
VIIIA | | 1 | 1
1.008
Hydrogen | 2
IIA | | | | | | | | | | | 13
IIIA | 14
IVA | 15
VA | 16
VIA | 17
VIIA | He 2 4.00 Helium | | 2 | 3
6.94
Lithium | Be
4
9.01
Beryllium | | 1 | ATC | IBOL
IMIC NUMB
IMIC WEIGH
ME | | | | ()= | = ESTIMAT | ES | B 5 10.81 Boron | 6
12.01
Carbon | 7
14.01
Nitrogen | 8
16.00
Oxygen | Fluorine | Ne
10
20.18
Neon | | 3 | Na
11
22.99
Sodium | Mg
12
24.31
Magnesium | 3
IIIB | 4
IVB | 5
VB | 6
VIB | 7
VIIB | 8 | 9
VIIIB | 10 | 11
IB | 12
IIB | 13
26.98
Aluminum | \$1
14
28.09
Silicon | P
15
30.97
Phosphorus | \$ 16 32.07 Sulfur | C1
17
35.45
Chlorine | 18
39.95
Argon | | 4 | K
19
39.10
Potassium | 20
40.08
Calcium | Sc
21
44.96
Scandium | Ti
22
47.88
Titanium | 23
50.94
Vanadium | Cr
24
52.00
Chromium | Mn
25
54.94
Manganese | Fe 26 55.85 Iron | 27
58.93
Cobalt | 28
58.69
Nickel | 29
63.55
Copper | Zn
30
65.39
Zinc | Ga
31
69.72
Gallium | Ge
32
72.61
Germanium | As 33 74.92 Arsenic | Se
34
78.96
Selenium | Br 35 79.90 Bromine | 36
83.80
Krypton | | 5 | Rb
37
85.47
Rubidium | 38
87.62
Strontium | 39
88.91
Yttrium | Zr
40
91.22
Zirconium | Nb
41
92.91
Niobium | 42
95.94
Molybdenum | Tc 43 (97.9) Technetium | Ru 44 101.07 Ruthenium | Rh 45 102.91 Rhodium | Pd
46
106.42
Palladium | Ag 47 107.87 Silver | Cd
48
112.41
Cadmium | 49
114.82
Indium | 50
118.71
Tin | 51
121.76
Antimony | Te 52 127.60 Tellurium | 53
126.90
lodine | Xe 54 131.29 Xenon | | 6 | Cs
55
132.91
Cesium | Ba 56 137.33 Barium | La 57 138.91 Lanthanum | 72
178.49
Hafnium | 73
180.95
Tantalum | 74
183.85
Tungsten | 75
186.21
Rhenium | OS
76
190.2
Osmium | 77
192.22
Iridium | 78
195.08
Platinum | 79
196.97
Gold | Hg
80
200.59
Mercury | 81
204.38
Thallium | Pb
82
207.2
Lead | 83
208.98
Bismuth | Po
84
(209)
Polonium | 85
(210)
Astatine | Rn
86
(222)
Radon | | 7 | Fr
87
223.02
Francium | Ra
88
226.03
Radium | 89
227.03
Actinium | Rf
104
(261)
Rutherfordium | 105
(262)
Dubnium | 106
(263)
Seaborgium | Bh
107
(262)
Bohrium | 108
(265)
Hassium | 109
(266)
Meitnerium | Unnamed
Discovery
110
Nov. 1994 | Unnamed
Discovery
111
Nov. 1994 | Unnamed
Discovery
112
1996 | | Unnamed
Discovery
114
1999 | | Unnamed
Discovery
116
1999 | | Unnamed
Discovery
118
1999 | | | ALKALI
METALS | ALKALI
EARTH
METALS | | | | | | | | - | | | | | | | HALOGENS | NOBLE
GASES | | | HAYDEN | | L | ANTHANIDES | 58
140.12
Cerium | Pr
59
140.91
Praeseodymium | Nd
60
144.24
Neodymium | Pm
61
(145)
Promethium | 62
150.36
Samarium | 63
152.97
Europium | Gd
64
157.25
Gadolinium | 7b
65
158.93
Terbium | Dy
66
162.50
Dysprosium | Ho
67
164.93
Holmium | 68
167.26
Erbium | Tm 69 168.93 Thulium | Yb 70 173.04 Ytterbium | Tu
71
174.97
Lutetium | | S | MCNEIL SPECIALTY PRODUCTS | publishi | ng.com | ACTINIDES | 7h
90
232.04
Thorium | Pa
91
231.04
Protacinium | 92
238.03
Uranium | Np
93
237.05
Neptunium | Pu
94
(240)
Plutonium | 95
243.06
Americium | 96
(247)
Curium | 97
(248)
Berkelium | OF
98
(251)
Californium | Es
99
252.08
Einsteinium | 100
257.10
Fermium | 101
(257)
Mendelevium | 102
259.10
Nobelium | 103
262.11
Lawrencium | | (| © Hayden-McNeil Specialty Products | | | | | | | | | | | | | | | | | | # Periodic Table # d-Block Transition Elements Most have partially occupied d sub-shells in common oxidation states ## What is a transition metal? an element which forms at least one ion with a partially filled d orbital(s). Why are they called d-block elements? Their last electron enters the d-orbital - Most d-block elements are also called transition metals. This is because they exhibit characteristics that ranges from s -block to p - block. - Zinc group and Scandium group are *NOT* considered as transition metals, are called Non-typical Transition elements - The d block consists of three horizontal series in periods 4, 5 & 6 - 10 elements in each series - Across the 1st row of the d block (Sc to Zn) each element - has 1 more electron and 1 more proton - Each "additional" electron enters the 3d sub-shell - The core configuration for all the 1st series of transition elements is [Ar] 3d¹⁻¹⁰ 4s² # Electronic Arrangement | Element | Z | | | | 3d | | | 4s | | |---------|-----------|------|-----------------|----------|------------|------------|----------|------------|--| | Sc | 21 | [Ar] | ↑ | | | | | ↑ Ψ | | | Ti | 22 | [Ar] | ↑ | ^ | | | | 1 | | | V | 23 | [Ar] | ↑ | 1 | 1 | | | ↑ Ψ | | | Cr | 24 | [Ar] | ^ | ↑ | ↑ | ^ | 个 | 个 | | | Mn | 25 | [Ar] | ↑ | 1 | 1 | 1 | 1 | ↑ Ψ | | | Fe | 26 | [Ar] | ↑ | 1 | 1 | 1 | 1 | ↑ Ψ | | | Co | 27 | [Ar] | ↑ | ^ | 1 | 1 | 1 | ↑ Ψ | | | Ni | 28 | [Ar] | ↑ | ^ | ↑ Ψ | 1 | 1 | ↑ Ψ | | | Cu | 29 | [Ar] | $\uparrow \psi$ | ^ | ↑ ₩ | ↑↓ | ↑↓ | 个 | | | Zn | 30 | [Ar] | 1 | 1 | 1 | ↑ Ψ | 1 | ↑ Ψ | | # Trends in properties ### Atomic and Ionic radii Decreases across the series as the atomic no. Increases, due to increase in nuclear charge. - From Sc to Cr regular expected decrease a) Increased nuclear attraction - b) From Cr to Ni - almost same size nuclear attraction = inter electronic repulsion - Ni to Zn Marginal increase c) nuclear attraction < inter electronic repulsion Follows the trend inversely to Changes in the atomic radii; However Zn group has very high value due to d10 configuration ## 3. Variable Oxidation States - > D-block elements exhibit variable oxidation states. - This means that they can form two or more different types of cations. - Examples: Iron can form both Fe²⁺ and Fe³⁺ - ➤ Manganese shows Mn²+, Mn³+, Mn⁴+, Mn⁶+ and Mn³+ ### **Oxidation States of TM's** - Nature of bonds Ionic and covalent - Lower OS's found in ionic compounds - E.g. compounds containing Cr³⁺, Mn²⁺, Fe³⁺, Cu²⁺ ions - TM's in higher OS's usually covalently bound to electronegative element such as O or F - E.g VO₃-, vanadate(V) ion; MnO₄-, manganate(VII) ion - Simple ions with high OS's such as V⁵⁺ & Mn⁷⁺ are not formed # Oxidising and reducing nature - lower oxidation states are highly reducing - E.g. V²⁺(aq) & Cr²⁺(aq) strong reducing agents - higher oxidation states are oxidising in nature - E.g. Co³⁺ is a strong oxidising agent, - KMnO₄ OS +7, K₂Cr₂ O₇ OS +6 are oxidising agents ### Acidic and basic nature - Higher oxidation states are acidic in nature - Lower oxidation states become increasingly basic ### via amphoteric nature ``` ✓ H₂ CrO₄ is strong acid – Cr OS +6 ``` ✓ Mn ₂ O₃ – basic (+3), MnO ₂ – amphoteric(+4), KMnO – acidic(+7) _{smftaasthana@yahoo.com 10} ## Formation of coloured ions The compounds of the d-block metal ions are usually colored, except, those of d^0 and d^{10} metal ions. The colors are due to: Electronic transitions of d-electrons within the d sub-shell. These are known as d \rightarrow d transitions. When light passes through these compounds, electrons from a lower energy d-orbital absorb a photon of energy and are promoted to higher energy d-orbitals. The energy absorbed is equivalent to the energy difference between the two sets of orbitals. Electron while returning from the excited state gives away the energy which falls in visible range of spectrum and the substance appears coloured. Since light of a certain frequency is absorbed, the light that comes out looks coloured because it lacks some colour. The colour of the compound is the complementary of the one that was absorbed ded transition: When a ligand approaches a transition metal ion, the five degenerated spilt into two different energy levels t_{2g} and eg. The energy difference between t_{2g} and e_g is denoted by ΔE . ΔE is very small, to make the electron from t_{2g} level to eg level light is absorbed in the visible region. For denoted in the electron, there must be at least one electron in t_{2g} level and one vacant orbital in eg. level. For eg: [Ti(H₂O)₆]⁺³ --- Purple colour Green light equal to 5000A⁰ is absorbed ie., white light minus green light will give light. For eg: [Cu(H₂O)₆]⁺² --- Blue colour ΔE is equal to red light, so white light minus red light gives blue colour. # Magnetic behaviour Electron is a micromagnet, moves - 1. On its axis Spin moment - 2. In the orbitals Orbital moment Total magnetic moment = Spin moment + Orbital moment $$\mu_{(S+L)} = \sqrt{4S(S+1) + L(L+1)}$$ Orbital moment is negligible, $$\mu_{\text{eff.}} = \sqrt{n(n+2)}$$ B.M. #### Types of magnetism #### (i) Paramagnetic substances: Substances which are weakly attracted into magnetic field are called paramagnetic substances. Paramagnetism arises from the presence of unpaired electrons in atoms, ions, complex ions and molecules. According to elementary physics the motion of an electric charge creates a magnetic field. Thus, the motion (spin motion and orbital motion) of an electron, creates a magnetic field. Each electron may, infact, be regarded as a micro magnet having a certain value of magnetic moment. The total magnetic moment of a substance is the result of the magnetic moments of all the individual electrons. #### (ii) Diamagnetic substances: Substances which are repelled by a magnetic field are called diamagnetic substances. This is due to the fact that small magnetic moments are induced into a substance when a magnetic field is brought in the vicinity of the substance. The magnetic moments induced however, are in opposite direction to the inducing field. This causes repulsion of the substance by the magnetic field. In substances in which electrons in their atoms are completely paired, the effect of individual electrons are mutually compensated. These substances, therefore do not show paramagnetic behaviour. In fact they show diamagnetic behaviour when placed in a magnetic field. Fig 1.4: Effect of magnetic field on paramagnetic and diamagnetic substances The magnetic permeability P, which is the ratio of the density of lines of forces within a body (which is placed in a magnetic field) to the density of lines in vacuum, is less than one for diamagnetic substances. Fig 1.5 Change in force of lines #### Measurement of magnetic moment: There are two common methods of measuring magnetic susceptibilities: The Faraday method and the Gouy method. However, the Gouy method by Gouy balance is more often used. Fig 1.7 - Gouy's magnetic balance ble 1.8: Magnetic moments of first transition series metal ions | | WHEN THE THE TANK A LEGISLATION OF THE PERSON PERSO | | Magnetic moment (BM) | | | | |--------------------------------------|--|---------------------------|----------------------|-------------------|--|--| | Ions | Outer electronic
Configuration | No. of unpaired electrons | Calculated | Observed | | | | Sc3+ | 3d ⁰ | 0 | 0 | 0 | | | | Ti ³⁺ | 3d1 | I and the second | 1.73 | 1.75 | | | | Ti ²⁺ | 3d ² | 2 | 2.84 | 2.76 | | | | V ²⁺ | 3d ³ | 3 | 3.87 | 3.86 | | | | Cr2+ | 3d ⁴ | 4 | 4.90 | 4.80 | | | | Mn ²⁺
Fe ²⁺ | 3d ⁵
3d ⁶ | 5. 4 | 5.92
4.90 | 5.96
5·0 - 5·5 | | | | Co ²⁺ | 3d ⁷ | 3 | 3.81 | 4.4 - 5.2 | | | | Ni ²⁺ | 3d ⁸ | 2 | 2.84 | 2.9 - 3.4 | | | | Cu ²⁺ | 3d ⁹ | 1 | 1.73 | 1.4 - 2.2 | | | | Zn ²⁺ | 3d ¹⁰ | 0 | 0 | 0 | | | # Ferromagnetism and Paramagnetism ### Ferromagnetism, antiferromagnetism and ferrimagnetism: Ferromagnetism is nothing but highly enhanced paramagnetism because of the close alignment of magnetic dipoles in the same direction. Ferromagnetic substances have their permeability much higher than unity. Antiferromagnetism arises when the magnetic moments at neighbouring centres are aligned in opposite directions. Ferrimagnetism is shown by some substances in which the individual magnetic moments are aligned in a systematic way so as to oppose others but giving rise to some finite resultant magnetic moment. eg: Fe₃O₄. **EOS** #### 1.11 Tendency to form complexes The transition elements have a great tendency to form complexes (coordination compounds) with Lewis bases, that is with the groups which are able to donate an electron pair. These groups are called ligands. A ligand may be a neutral molecule such as NH₃, or an ion such as Cl⁻ or CN⁻. eg: $$Co^{+3} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{+3}$$ $Fe^{+2} + 6CN^- \longrightarrow [Fe(CN)_6]^{-4}$ The tendency of the transition metals cations to form complexes is due to the following reasons: - (i) The transition metal cations are relatively very small in size and hence have high positive charge density which makes it easy for the transition metal cations to accept the lone pairs of electrons from the ligands. - (ii) The transition metal cations have vacant (n-1) d-orbitals which have approximately the right energy to accept lone pairs of electrons. - (iii) The transition metal are capable of showing several oxidation states. Due to the presence of coordinate bonds between the metal cation and the ligands, the complexes are termed as coordination compounds. The complex ions have in general, linear, square planar, tetrahedral or octahedral structure depending upon the nature of hybridisation of the metal ion orbitals. #### Stability of coordination compounds: General trends towards increased stabilities of complex compounds are : - (a) Stability of complexes decreases with the increase in atomic number. - (b) In a particular oxidation state, the stability of a complex increases with decrease in the size of atoms. #### 1.12 Catalytic properties Most of the transition elements are used as good catalysts both in the laboratory and industry. In some cases because of their variable valency transition metals may form unstable intermediate compounds. These intermediate products decompose to give the final product, regenerating the catalyst. According to the adsorption theory, finely powdered metals or their compounds provide a large surface area for adsorption and the reactants react faster due to closer contact. #### Examples - 1. Vanadium as V₂O₅ is used in the manufacture of H₂SO₄ by contact process. - 2. Nickel is used in hydrogenation reactions like conversions of oils to fats, conversion of CO and steam into CO₂ and H₂. - 3. Platinum is used in the oxidation of NH₃ to nitric oxide in the manufacturing of HNO₃ by Ostwald process. - 4. Fe is used in the manufacture of NH₃ by the Haber process. #### In Organic Chemistry: - 1. Fentons reagent (FeSO₄ + H₂O₂) is used for oxidising alchols to aldehyds. - 2. Pd is used for hydrogenation of Phenol to cyclohexane. - 3. Ziegler Natta Catalyst (TiCl₄) is used for the manufacture of polythene. ### **Titanium Triad** | titanium
22
Ti
47.867 | Titanium | [Ar] 3d ² 4s ² | Quite unreactive | |--------------------------------------|---------------|---|-------------------------| | zirconium
40
Zr
91.224 | Zirconium | [Kr] 4d ² 5s ² | Fairly inactive element | | hafnium
72
Hf
178.49 | Hafnium | [Xe] 4f ¹⁴ 5d ² 6s ² | Not very reactive | | rutherfordium
104
Rf | Rutherfordium | [Rn] $5f^{14} 6d^27s^2$ | Highly radioactive | ### **Oxidation States** | M ⁴⁺ | M ³⁺ | M ²⁺ | |---------------------------------------|--------------------|-------------------| | 1. Most stable –d ⁰ Config | Fairy stable | Unstable | | 2. Covalent, Tetrahedral | Reducing agents | strongly reducing | | 3. Diamagnetic | Paramagnetic (1 e) | Paramagnetic | | 4. Colourless | Coloured | Coloured | M³+ and M²+ undergo disproportionation to give higher and lower O.S. 2 Ti $$Cl_2 \rightarrow Ti Cl_4 + Ti$$ 2 Ti $Cl_3 \rightarrow Ti Cl_4 + Ti Cl_2$ ### **Oxides** #### 1. Normal oxides - MO₂: 1. Stable and insoluble in water - 2. Basic nature of oxides increases down the group $$Ti O_2$$: Amphoteric $Ti O_2 + H_2 SO_4 \rightarrow Ti O SO_4 + H_2 O$ Conc. Titanyl sulphate **ZrO₂**: Basic, **HfO₂**: More Basic, on heating becomes refractory and are used as pigments ### 2. Oxygenyl ions: - 1. Titanyl ion, TiO²⁺ is unstable and polymerises to form chains - 2. Ziroconyl ion, ZrO²⁺ is stable #### 3. Peroxides: ``` on heating with H_2O_2 peroxides are obtained . General formula - M(OH)_3 OOH when M=Ti, Zr, ``` smitaasthana@yahoo.com20 ### **Halides** - 1. Ti & Zr give all the tetrahalides, MX4 - 2. Hf given only HfF₄ & HfCL₄ - 3. Tetrafluorides are ionic while other are covalent. - 4. Except MF₄ others undergo hydrolysis and fume in moist air $$TiX_4 \rightarrow Ti(OH)_4 \rightarrow TiO_2$$. $2H_2O$ 5. Tetrahalides are electron pair acceptors and given six coordinated complex ions Ti $$F_4 + 2 \text{ NaF} \rightarrow \text{Na}_2 [\text{TiF}_6]$$ ## **Chromium Triad** Cr: +2, +3, +6 [Ar] 3d⁵4s¹ [Kr] 4d⁵5s¹ Mo: +2, +3, +4, +5, +6 [Xe] 4f¹⁴ 5d⁵6s¹ W: +2, +3, +4, +5, +6 - Electronic configuration: The general electronic configuration of the chromium group is (n-1) d⁴ ns¹ in the case of Cr, Mo and (n-2) f¹⁴ (n-1) d⁴ ns² in the case of W. - (ii) Oxidation states: On descending the group the higher oxidation states become more stable and the lower states become less stable. They show variable oxidation states mainly +III and +VI, because there is very little total energy difference between (n-1)d orbitals and ns orbitals and the electrons from both levels can be used in bonding. - (iii) Size of atoms and ions: Down the group the effective nuclear charge becomes less than the screening effect due to the addition of new shells, so covalent and ionic radii go on increasing. The covalent radius increases from Cr toMo to W. But the sizes of Mo and W are almost same due to the lanthanide contraction. - (iv) Reactivity: All of them forms excellent alloys. They directly combine with O, S, N forming their oxides, sulphides and nitrides respectively. Chromium is unreactive and passive at low temperatures due to the formation of oxide layer. It dissolves in HCl and H₂SO₄, but not in HNO₃ or aquaregia Mo and W are relatively inert, and are only slightly attacked by aqeous acids and alkalis. - (v) Ionisation energy: The first ionisation energy of elements increases down the group. - All are coloured and paramagnetic **Copper Triad** | F | | |---|--------------| | | copper
29 | | | Cu | | Ш | 63.546 | | П | silver | | П | 47 | | | Ag | | Ц | 107.87 | | П | gold | | П | 79 | | | Au | | U | 106 07 | | П | | | Cu | Ag | Au | |-------------------|--|---| | 29 | 47 | 79 | | $[Ar]3d^{10}4s^1$ | $[Kr]4d^{10}5s^1$ | $[Xe]4f^{14}5d^{10}6s^1$ | | 128 | 144 | 144 | | 1.9 | 1.9 | 2.4 | | +1, +2 | +1, +2, +3 | +1, +3 | | | 29
[Ar]3d ¹⁰ 4s ¹
128
1.9 | 29 47 [Ar] $3d^{10}4s^{1}$ [Kr] $4d^{10}5s^{1}$ 128 144 1.9 1.9 | #### (i) Oxidation states - s and d electrons are involved in bonding - For Copper +2, Silver +1 and Gold +3 are Most stable O.S. - •Cu +1 Disproportionate in water Cu₂ Cl₂ → Cu + CuCl ₂ - •Cu³⁺ is known in some complexes [CuF₆]³⁻ - Ag²⁺ and Ag³⁺ are strong O.A. - (ii) Size of atoms and ions: Down the group the covalent radius and ionic radius go on increasing. This is because of the decrease in the effective nuclear charge than the screening effect due to addition of new shells. The first ionisation energy of elements, however, increases with increase in atomic number down the group. It is because of increased nuclear charge than the screening effect of added new shells. (iii) Reactivity: Cu reacts with O₂ to form oxides whereas Ag and Au do not react. They react with sulphur to form sulphides. $$2Cu + O_2 \longrightarrow 2CuO$$ $$2Cu + S \longrightarrow Cu_2S$$ $$2Ag + S \longrightarrow Ag_2S$$ All of them form corresponding halides. Cu does not react with HCl but reacts with HNO₃ and H₂SO₄. Ag dissolves in conc. H₂SO₄ and conc HNO₃. Au does not react with any acid but reacts with aqua regia.